Developing Convolutional Neural Networks-Based System for Predicting Pneumonia Using X-Radiography Image
Abstract
Full Text:
View Full TextReferences
Hamborsky J, Kroger A, Wolfe S, for Disease Control C, Prevention, others. Epidemiology and prevention of vaccine-preventable diseases. US Department of Health & Human Services, Centers for Disease Control and~…; 2015.
Brooks WA. Bacterial Pneumonia. In: Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier; 2020. p. 446–53.
UNICEF. UNICEF Annual Reports [Internet]. 2020. Available from: https://www.unicef.org
American Lung Association [Internet]. American Lung Association; 2020. Available from: www.lung.org
Mattila JT, Fine MJ, Limper AH, Murray PR, Chen BB, Lin PL. Pneumonia. Treatment and diagnosis. Ann Am Thorac Soc. 2014;11(Supplement 4):S189--S192.
Makhnevich A, Sinvani L, Cohen SL, Feldhamer KH, Zhang M, Lesser ML, et al. The clinical utility of chest radiography for identifying pneumonia: accounting for diagnostic uncertainty in radiology reports. Am J Roentgenol. 2019;213(6):1207–12.
Al Mubarok AF, Dominique JAM, Thias AH. Pneumonia Detection with Deep Convolutional Architecture. In: 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT). 2019. p. 486–9.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12(Oct):2825–30.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A System for Large-Scale Machine Learning (pp. 265--283). In: 12th ${$USENIX$}$ Symposium on Operating Systems Design and Implementation (${$OSDI$}$ 16) Retrieved from https://www usenix org/conference/osdi16/technical-sessions/presentation/abadirpy2(nd) Retrieved March. 2016. p. 2019.
Gulli A, Pal S. Deep learning with Keras. Packt Publishing Ltd; 2017.
Habib PT, Alsamman AM, Hassanein SE, Hamwieh A. TarDict: RandomForestClassifier-based software predict Drug-Tartget interaction. bioRxiv. 2020;
Matstubara T, Ochiai T, Hayashida M, Akutsu T, Nacher JC. Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles. J Bioinform Comput Biol [Internet]. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0219720019400079?af=R
Lu S, Lu Z, Zhang Y-D. Pathological brain detection based on AlexNet and transfer learning. J Comput Sci. 2019;30:41–7.
Lebedev V, Lempitsky V. Fast convnets using group-wise brain damage. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 2554–64.
Ezhilarasi R, Varalakshmi P. Tumor Detection in the Brain using Faster R-CNN. In: 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on. 2018. p. 388–92.
kaggle [Internet]. 2020. Available from: www.kaggle.com%0A
Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.
Franquet T. Imaging of pneumonia: trends and algorithms. Eur Respir J. 2001;18(1):196–208.
Goodman P, Prosch H, Herold CJ. Imaging of Pulmonary Infections. In: Diseases of the Chest and Heart 2015--2018. Springer; 2015. p. 63–70.
DOI: https://doi.org/10.36462/H.BioSci.20201
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Habib et al.
This work is licensed under a Creative Commons Attribution 4.0 International License.
...........................................................................................................................................................
Other "Highlights in" Journals
Highlights in Bioinformatics, Highlights in Chemistry, Highlights in Science, Highlights in Microbiology, Highlights in Plant Science
........................................................................................................................................
International Library of Science "HighlightsIn" is an Open Access Scientific Publishers, aiming to science and knowledge support