DNA Variations between Medicago truncatula Symbiotic Mutant Line and Native Variant Using Fluorescence-Based AFLP Marker

Asmaa Hamdy Hassan, Ghada Abu El-Heba, Mohamed A-bouzeid

Abstract


Abstract

      Genetic mutagenesis is a very efficient tool in studying genes function. Because of the great benefits of legumes as human food and animal feed worldwide, we used a model plant Medicago truncatula for identification gene function related to nitrogen fixation process. Our mutant is a Medicago mutant line contains a tobacco Tnt1 retro-transposon mobile element with the two Long Terminal Repeats (LTR) inserted within the genome. Our mutant is predicted to contain a mutation in gene/s belonging to symbiotic interaction between legume and rhizobia. A novel technique was used based on using fluorescent oligonucleotide primers against oligonucleotide primers for Tnt1-LTRs of our mutant. This novel protocol was very successful in detecting the polymorphism between our mutant line and the wild variant R108 using Biosystems 310 Genetic Analyzer. Electropherograms of the mutant line and wild type gave a total of 561 well- resolved AFLP peaks, 357of which were polymorphic peaks and 204 were monomorphic peaks. This novel technique enables the calculation percentage of polymorphism between the mutant line and the wild type. Additionally, primers combinations amplified more bands from others to detect polymorphism between the plants


Keywords


Medicago truncatula, AFLP, Polymorphism, Symbiotic mutant, Nitrogen fixation.

Full Text:

View Full Text

References


Graham PH, Vance CP. Legumes : Importance and Constraints to Greater Use Update on Legume Utilization Legumes : Importance and Constraints to Greater Use. Plant Physiol. 2003;131(April 2003):873–7.

Zakhia F,de Lajudie P . Taxonomy of Rhizobia. EDP Sci. 2001;21:569–76.

Smil. Nitrogen in crop production : An account of global flows adds recycled in organic up by harvested and Quantification of N losses from crop to 26-60. Glob Biogeochem CYCLES,. 1999;13(2):647–62.

‎‎Fuhrmann ‎‎M. Hennecke H. Rhizobium japonicum Nitrogenase Fe Protein Gene (nifH). J Bacteriol. 1984;158(3):1005–11.

Roche P. Maillet F. Plazanet C. Debellé F.Ferro M et al. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sc. 1996;93:15305–10.

Radutoiu S. Madsen LH.Madsen EB. Felle HH. Umehara Y. Grønlund M.et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. 2003;425:585–92.

ArrighiJ-F, Barre A, BenAmorB, BersoultA, Soriano LC, Mirabella R, de CarvalhoNiebel F, Journet E-P, GhérardiM, Huguet T et al. The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New. Plant Physiol. 2006;142(September):265–79.

Mergaert P, Uchiumi T, Benoıt A E, Cheron A, Catrice O, Mausset A-E, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium – legume symbiosis. pnas. 2006;

Pislariu CI D. Murray J, Wen J, Cosson V, Muni RRD, Wang M, et al. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation. Plant Physiol [Internet]. 2012;159(4):1686–99.

Penmetsa RV, Cook DR. Production and Characterization of Diverse Developmental Mutants of Medicago truncatula 1. Plant Physiol. 2000;123:1387–97.

Rogers C, Wen J, Chen R, Giles O. Deletion-Based Reverse Genetics in Medicago truncatula Breakthroughtechnologsis 2009;151:1077–86.

Tadege M, Ratet P, Mysore KS. Insertional mutagenesis : a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci. 2005;10(5):229–35.

Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. 2008;

Urban´ ski D F, Małolepszy A, J Stougaard , Andersen SU. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. plant J. 2012;69:731–41.

Wessler SR. Transposable elements and the evolution of eukaryotic genomes. Nat Rev Genet. 2006;103(47):17600–1.

Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P. Ef ficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J. 2003;34(1):95–106.

Grandbastien, Marie-Angele AS& MC, Laboratoire. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. nature,. 1989;337:5–9.

Pouteau S, Huttner E, Grandbastien M A, Caboche M. Specific expression of the tobacco Tntl in protoplasts. EMBO. 1991;10(7):1911–8.

Mazier M, Botton E, Flamain F, Bouchet J-P , Courtial ´, et al. Successful Gene Tagging in Lettuce Using the Tnt1 Retrotransposon from Tobacco. 2007;144:18–31.

Thom‎as CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, et al. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf‐9 gene for resistance to Cladosporium fulvum. Plant J. 1995;8(5):785–94.

Weising K, Nybom H, Wolff K KG. DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. Boca Raton: CRC Press. 2005. 472-477 p.

Karudapuram S, Larson S. Identification of Hedysarum Varieties Using Amplified Fragment Length Polymorphism on a Capillary Electrophoresis System. J biomlecular Tech. 2005;16(4):316–24.

Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008;54:335–47.

Shao C, Russinova E, Iantcheva A, Atanassov A, Mccormac A, Chen D, et al. Rapid transformation and regeneration of alfalfa ( Medicago falcata L .). plant growrt Regul. 2000;31:155–66.

Ratet P, Porceddu A, Mysore KS. Insertional mutagenesis in M . truncatula using Tnt1 retrotransposon Insertional mutagenesis in Medicago truncatula using Tnt1 retrotransposon . 2010.1-12.

Kumar, Bennetzen JL. plant Retrotransposons. Annu Rev Genet. 1999;33:479–532.

Greco R, Ouwerkerk PBF, Sallaud C, Kohli A, Colombo L, Puigdome P, et al. Resources and Opportunities Transposon Insertional Mutagenesis in Rice 1 , 2. Plant Physiol. 2001;125:5–7.

Cui Y, Barampuram S, Stacey MG, Hancock CN, Findley S, Mathieu M, et al. Tnt1 Retrotransposon Mutagenesis : A Tool for Soybean. 2013;161:36–47.




DOI: https://doi.org/10.36462/H.BioSci.20202

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Hassan et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

...........................................................................................................................................................

Other "Highlights in" Journals

Highlights_in_BioScience

Highlights in Bioinformatics              Highlights in Chemistry                 Highlights in Science

Highlights_in_BioScience

Highlights in Microbiology              Highlights in Plant Science

Free counters!


........................................................................................................................................

International Library of Science "Highlights in" is an Open Access Scientific Publishers, aiming to science and knowledge support