Characterization of EST‑SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSR‑containing unigenes

Laila Dabab Nahas, Alsamman M. Alsamman, Aladdin Hamwieh, Naim Al-Husein, Ghinwa Lababidi


Bread wheat (Triticum aestivum) is an important staple food around the world. The enormous volume of the genome of wheat makes it quite slow to progress in traditional scientific research. On the other hand, incessant databases and suitable tools on web sites make progress in wheat research quicker and easier. Drought is a major abiotic stress in accordance with weather changes and accelerated increase in drylands. In this study, 9077 ESTs related to drought tolerance in hexaploid wheat were downloaded from NCBI and assembled into 12062 contigs and 4141 singletons. It was found that trinucleotide had the highest frequency 64.71%. Moreover, 53.80% of SSRs found in coding regions in respect of ORFs. The highest amino acids found for tri-and hexanucleotides were Arginine.  In addition, 81% of SSR-containing unigenes had one chromosome location and the highest number of loci was found in chromosomes 1B (69). The distribution of genic SSR loci among the 21 wheat chromosomes, the three subgenomes, and the seven homoeologous groups of wheat chromosomes was significant, with P<0.01 indicating a non-random distribution.  Functional annotation and characterization of SSR-containing unigenes have been performed. Eighty-six sequences were identified and sorted into 25 putative TF families and establish 166 pathways using KEGG.  Primer-BLAST was used to predict the polymorphism, which was 39% of the 63 primer pairs of SSR markers. Our current study attempts to help farmers in wheat breeding programs to have drought-tolerant accessions, particularly in developing countries.


Drought, wheat, EST-SSR, in-silico, computational.

Full Text:

View Full Text


Alsamman, A.M., Ibrahim, S.D., Hamwieh, A., 2019. KASPspoon: An in vitro and in silico PCR analysis tool for high-throughput SNP genotyping. Bioinformatics.

Aninbon, C., Jogloy, S., Vorasoot, N., Nuchadomrong, S., 2017. Change of arginine content and some physiological traits under midseason drought in peanut genotypes with different levels of drought resistance 285–293.

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J. and Ronen, G., 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. RESEARCH 7191.

Arbeiter, A.B., Hladnik, M., Jakše, J., Bandelj, D., 2017. Identification and validation of novel EST-SSR markers in olives. Sci. Agric. 2, 215–225.

Asadi, A.A., Rashidi Monfared, S., 2014. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments. Mol. Genet. Genomics 289, 625–640.

Bernardo, R., 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci.

Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L.A., D’Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F.X., Edwards, K.J., Bevan, M.W., Hall, N., 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710.

Budak, H., Kantar, M., Yucebilgili Kurtoglu, K., 2013. Drought tolerance in modern and wild wheat. Sci. World J. 2013.

Conesa, A., Götz, S., 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008.

Farooq, M., Hussain, M., Siddique, K.H.M., 2014. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRC. Crit. Rev. Plant Sci.

Gahlaut, V., Jaiswal, V., Tyagi, B.S., Singh, G., Sareen, S., Balyan, H.S., Gupta, P.K., 2017. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS One 12, e0182857.

Gill, B.S., Appels, R., Botha-Oberholster, A.M., Buell, C.R., Bennetzen, J.L., Chalhoub, B., Chumley, F., Dvořák, J., Iwanaga, M., Keller, B., Li, W., McCombie, W.R., Ogihara, Y., Quetier, F., Sasaki, T., 2004. A workshop report on wheat genome sequencing: International genome research on wheat consortium, in: Genetics.

Gill, B.S., Friebe, B., Do, T.R.E.N., 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat ( Triticum aestivum )’ 1986.

Goyal, E., Amit, S.K., Singh, R.S., Mahato, A.K., Chand, S., 2016. Transcriptome profiling of the salt- stress response in Triticum aestivum cv . Kharchia Local. Nat. Publ. Gr. 1–14.

Huang, X., Madan, A., 1999. CAP3: A DNA sequence assembly program. Genome Res.

Iqbal, M.J., Maqsood, Y., Abdin, Z.U., Manzoor, A., Hassan, M., Jamil, A., 2016. SSR Markers Associated with Proline in Drought Tolerant Wheat Germplasm. Appl. Biochem. Biotechnol.

Iquebal, M.A., Sharma, P., Jasrotia, R.S., Jaiswal, S., Kaur, A., 2019. RNAseq analysis reveals drought- responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci. Rep. 1–18.

Kent, W.J., 2002. BLAT — The BLAST -Like Alignment Tool. Genome Res. 12, 656–664.

Li, Chao, Li, Cheng, Wang, B., Zhang, R., Fu, K., Gale, W.J., Li, Chunyan, 2018. Programmed cell death in wheat ( Triticum aestivum L . ) endosperm cells is affected by drought stress 1039–1052.

M. Perez-de-Castro, A., Vilanova, S., Canizares, J., Pascual, L., M. Blanca, J., J. Diez, M., Prohens, J., Pico, B., 2012. Application of Genomic Tools in Plant Breeding. Curr. Genomics.

Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., Goto, S., 2006. EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res.

Michaletti, A., Naghavi, M.R., Toorchi, M., Zolla, L., Rinalducci, S., 2018. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep.

Mohan, A., Goyal, A., Singh, R., Balyan, H.S., Gupta, P.K., 2007. Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes. Crop Sci.

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res.

Nahas, L.D., Al-husein, N., Lababidi, G., Hamwieh, A., 2019. In silico prediction of novel genes responsive to drought and salinity in bread wheat ( Triticum aestivum ). PLoS One 1–13.

Nezhadahmadi, A., Prodhan, Z.H., Faruq, G., 2013. Drought Tolerance in Wheat 2013.

Peng, J.H., Lapitan, N.L.V., 2005. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genomics.

Qiu, L., Yang, C., Tian, B., Yang, J.B., Liu, A., 2010. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol.

Rudd, S., 2003. Expressed sequence tags: Alternative or complement to whole genome sequences? Trends Plant Sci.

Saini, P., Yadav, D.K.R.C., Yadav, N.R., 2019. SRAPs and EST-SSRs provide useful molecular diversity for targeting drought and salinity tolerance in Indian mustard. Mol. Biol. Rep. 0, 0.

Sathishkumar, R., Lakshmi, P.T.V., Annamalai, A., Arunachalam, V., 2011. Mining of simple sequence repeats in the Genome of Gentianaceae. Pharmacognosy Res.

SHI, J. feng, MAO, X. guo, JING, R. lian, PANG, X. bin, WANG, Y. guo, CHANG, X. ping, 2010. Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat. Agric. Sci. China.

Shi, S., Azam, F.I., Li, H., Chang, X., Li, B., Jing, R., 2017. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 213, 1–19.

Singh, A.K., Chaurasia, S., Kumar, S., Singh, R., Kumari, J., Yadav, M.C., Singh, N., Gaba, S., Jacob, S.R., 2018. Identification , analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biol. 1–15.

Sorkheh, K., Prudencio, A.S., Ghebinejad, A., Dehkordi, M.K., Erogul, D., Rubio, M., Martínez-Gómez, P., 2016. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res. Notes 9, 1–11.

Sun, S.J., Guo, S.Q., Yang, X., Bao, Y.M., Tang, H.J., Sun, H., Huang, J., Zhang, H.S., 2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot.

Thiel, T., Michalek, W., Varshney, K., Graner, A., 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley ( Hordeum vulgare L .) 411–422.

Ullah, N., Yüce, M., Neslihan Öztürk Gökçe, Z., Budak, H., 2017. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics.

Varshney, R.K., Graner, A., Sorrells, M.E., 2005. Genic microsatellite markers in plants : features and applications 23.

Varshney, R.K., Hiremath, P.J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A.A., Vadez, V., Xiao, Y., Srinivasan, R., Gaur, P.M., Siddique, K.H.M., Town, C.D., Hoisington, D.A., 2009. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10.

WANG, S. guang, JIA, S. shan, SUN, D. zhen, FAN, H., CHANG, X. ping, JING, R. lian, 2016. Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). J. Integr. Agric. 15, 1955–1967.

Xia, H., Zheng, X., Chen, L., Gao, H., Yang, H., Long, P., Rong, J., Lu, B., Li, J., Luo, L., 2014. Genetic Differentiation Revealed by Selective Loci of Drought-Responding EST-SSRs between Upland and Lowland Rice in China 9.

Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., Li, Y., Zhang, H., Ali, J., Li, Z., 2014. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One.

Yan, D.H., Xia, X., Yin, W., 2013. NF-YB Family Genes Identified in a Poplar Genome-wide Analysis and Expressed in Populus euphratica Are Responsive to Drought Stress. Plant Mol. Biol. Report.

Yang, Z.J., Peng, Z.S., Yang, H., 2016. Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat ( Triticum aestivum L .). GMR 177, 1–14.

Zhuang, X., McPhee, K.E., Coram, T.E., Peever, T.L., Chilvers, M.I., 2013. Development and Characterization of 37 Novel EST-SSR Markers in Pisum sativum (Fabaceae) . Appl. Plant Sci.



  • There are currently no refbacks.

Copyright (c) 2020 Highlights in BioScience

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


 Free counters!

Free counters!

International Library of Science is a nonprofit publisher, innovator, the science supporting and knowledge organization
Copyright 2020 All copyrights are reserved by International Library of Science