blkn, a novel Medicago truncatula mutant achieving black nodule phenotype

Asmaa Hassan, Naglaa Abdallah, Mohamed A-bouzeid, Ghada Abu El-Heba

Abstract


blkn is a Medicago truncatula mutant that is achieving null function-black nodule phenotype. blkn is a Tnt1-retrotransposon mutant, Tnt1 is Nicotiana tabacum retro-transposon which is replicated via RNA copy and integrated in plant genome. Interestingly, blkn exhibited double contents of phenolic compounds comparing to R108 wild type. The mutated black nodule is displaying cells abnormality in both infection and nitrogen fixation zones. Transverse section of blkn nodule doesn’t display clearly characteristic shape like the control and the symbiotic cells don't totally filled with bacteroids along with high lignification at the cell wall periphery. Our goal was blkn mutant; phenotype, physiological, and molecular characterizations. AFLP-based PCR method was used to detect the mutated gene(s) in this mutant line. About 25 Tnt1-tagged fragments ranging from ~100 to ~500 bp were isolated, sequenced and submitted to Genbank. The Tnt1 insertion was precisely located next to the base number 303 post ATG start codon of M. truncatula L-type lectin-domain receptor kinase VII.2 gene encodes Lectin_LegB Receptor Like Kinase (MtLectinRLK). MtLectinRLK contains Lectin_legB domain, two transmembrane helix (TMhilex) and an extracellular Receptor Protein kinase (Pkinase). MtLectinRLK is an ancestry related to probable L-type lectin-domain containing receptor kinase Cicer arietinum, Trifolium pretense, Phaseolus vulgaris, Vigna radiate and Glycine soja.

Keywords


blkn mutant, Medicago truncatula, lectin-domain, receptor kinase, Tnt1 retrotransposon, FSTs, AFLP

Full Text:

View Full Text

References


Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant physiology. 2003 Mar 1; 131(3):872-7.

Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proceedings of the National Academy of Sciences. 2008 Jul 15; 105 (28):9823-8.

Pislariu CI, Murray JD, Wen J, Cosson V, Muni RR, Wang M, Benedito VA, Andriankaja A, Cheng X, Jerez IT, Mondy S. A Medicago truncatula tobacco retrotran-sposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiology. 2012 Aug 1; 159(4):1686-99.

Udvardi MK, Day DA. Metabolite transport across symbiotic membranes of legume nodules. Annual review of plant biology. 1997 Jun; 48 (1):493-523.

Kumar A, Bennetzen JL. Plant retrotransposons. Annual review of genetics. 1999 Dec;33 (1):479-532.

Cook DR. Medicago truncatula-a model in the making!. Current opinion in plant biology. 1999 Aug;2 (4):301-4.

Udvardi MK, Tabata S, Parniske M, Stougaard J. Lotus japonicus: legume research in the fast lane. Trends in plant science. 2005 May 1; 10 (5):222-8.

Scholte M, d'Erfurth I, Rippa S, Mondy S, Cosson V, Durand P, Breda C, Trinh H, Rodriguez-Llorente I, Kondorosi E, Schultze M. T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Molecular Breeding. 2002 Dec 1;10(4):203-15.

d'Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P. Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. The Plant Journal. 2003 Apr;34(1):95-106.

Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P. Large‐scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal. 2008 Apr;54 (2):335-47.

Sun L, Ge Y, Bancroft AC, Cheng X, Wen J. FNBtools: A software to identify homozygous lesions in deletion mutant populations. Frontiers in plant science. 2018 Jul 10;9:976.

Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G. The composite genome of the legume symbiont. Science. Sinorhizobium meliloti 2001 Jul 27;293(5530):668-72.

Ehrhardt DW, Atkinson EM. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science. 1992 May 15;256(5059):998-1000.

Elkamali HH, Eltahir AS, Yousif IS, Khalid AM, Elneel EA. Comparative Anatomical Study of the Stems and Leaflets of Tribulus longipetalous, T. pentandrus and T. terrestris (Zygophyllaceae). Open Access Library Journal. 2016 Aug 30;3(8):1-5.

Summerfield RJ, Dart PJ, Huxley PA, Eaglesham AR, Minchin FR, Day JM. Nitrogen nutrition of cowpea (Vigna unguiculata). I. Effects of applied nitrogen and symbiotic nitrogen fixation on growth and seed yield. Experimental Agriculture. 1977 Apr;13(2):129-42.

Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell. 2009 Mar 1;21(3):767-85.

Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current protocols in food analytical chemistry. 2001 Aug;1(1):F4-3.

Patel A, Patel A, Patel A, Patel NM. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Research. 2010 May;2(3):152.

Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols. 2007 Apr;2(4):875-7.

Ratet P, Porcedu A, Tadege M, Mysore KS. Insertional mutagenesis in M. truncatula using Tnt1 retrotransposon.

Oldroyd GE, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics. 2011 Dec 15;45:119-44.

Nicaise V, Roux M, Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant physiology. 2009 Aug 1;150(4):1638-47.

Jones JD, Dangl JL. The plant immune system. nature. 2006 Nov;444(7117):323-9.

Tsuda K, Katagiri F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current opinion in plant biology. 2010 Aug 1;13(4):459-65.

Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology. 2009 Jun 2;60:379-406.

Tang D, Wang G, Zhou JM. Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant Cell. 2017 Apr 1;29(4):618-37.

Kimura S, Waszczak C, Hunter K, Wrzaczek M. Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. The Plant Cell. 2017 Apr 1;29(4):638-54.

Bouwmeester K, Govers F. Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. Journal of experimental botany. 2009 Nov 1;60(15):4383-96.

Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB. S locus genes and the evolution of self-fertility in Arabidopsis thaliana. The Plant Cell. 2007 Jan 1;19(1):94-106.

Cambi A, Koopman M, Figdor CG. How C‐type lectins detect pathogens. Cellular microbiology. 2005 Apr;7(4):481-8.

Herve C, Dabos P, Galaud JP, Rougé P, Lescure B. Characterization of an Arabidopsis thaliana Gene that Defines a New Class of Putative Plant Receptor Kinases with an Extracellular Lectin-like Domain. Journal of molecular biology. 1996 May 24;258(5):778-88.

Garcia-Hernandez M, Berardini T, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S. TAIR: a resource for integrated Arabidopsis data. Functional and integrative genomics. 2002 Nov 1;2(6):239-53.

He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theoretical and Applied Genetics. 2004 Jul 1;109(2):377-83.

Joshi A, Dang HQ, Vaid N, Tuteja N. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconjugate journal. 2010 Jan 1;27(1):133-50.

Bouwmeester K, De Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F. The lectin receptor kinase LecRK-I. 9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 2011 Mar 31;7(3):e1001327.

Balagué C, Gouget A, Bouchez O, Souriac C, Haget N, Boutet‐Mercey S, Govers F, Roby D, Canut H. The Arabidopsis thaliana lectin receptor kinase LecRK‐I. 9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling. Molecular plant pathology. 2017 Sep;18(7):937-48.

Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B. AB‐lectin receptor kinase gene conferring rice blast resistance. The Plant Journal. 2006 Jun;46(5):794-804.

Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta. 2008 Nov 1;228(6):977-87.

Sanabria NM, van Heerden H, Dubery IA. Molecular characterisation and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. Gene. 2012 Jun 10;501(1):39-48.

Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C. NFP, a L ys M protein controlling N od f actor perception, also intervenes in M edicago truncatula resistance to pathogens. New Phytologist. 2013 May;198(3):875-86.

De Gara L, de Pinto MC, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry. 2003 Oct 1;41(10):863-70.

Takahama U. Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochemistry Reviews. 2004 Jan 1;3(1-2):207-19.

Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry reviews. 2004 Jan 1;3(1-2):29-60.

Roopashree S, Singh SA, Gowda LR, Rao AGA. Dual-function protein in plant defence : seed lectin from Dolichos biflorus ( horse gram ) exhibits lipoxygenase activity. Biochem J. 2006;639:629–39.




DOI: https://doi.org/10.36462/H.BioSci.20219

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Hassan et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

...........................................................................................................................................................

Other "Highlights in" Journals

Highlights_in_BioScience

Highlights in Bioinformatics              Highlights in Chemistry                 Highlights in Science

Highlights_in_BioScience

Highlights in Microbiology              Highlights in Plant Science

Free counters!


........................................................................................................................................

International Library of Science "Highlights in" is an Open Access Scientific Publishers, aiming to science and knowledge support
Copyright 2018-2020 All copyrights are reserved by International Library of Science "Highlights in"