Characterization of EST‑SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSR‑containing unigenes

Laila Dabab Nahas, Alsamman M. Alsamman, Aladdin Hamwieh, Naim Al-Husein, Ghinwa Lababidi

Abstract


Bread wheat (Triticum aestivum) is an important staple food around the world. The enormous volume of the genome of wheat makes it quite slow to progress in traditional scientific research. On the other hand, incessant databases and suitable tools on web sites make progress in wheat research quicker and easier. Drought is a major abiotic stress in accordance with weather changes and accelerated increase in drylands. In this study, 9077 ESTs related to drought tolerance in hexaploid wheat were downloaded from NCBI and assembled into 12062 contigs and 4141 singletons. It was found that trinucleotide had the highest frequency 64.71%. Moreover, 53.80% of SSRs found in coding regions in respect of ORFs. The highest amino acids found for tri-and hexanucleotides were Arginine.  In addition, 81% of SSR-containing unigenes had one chromosome location and the highest number of loci was found in chromosomes 1B (69). The distribution of genic SSR loci among the 21 wheat chromosomes, the three subgenomes, and the seven homoeologous groups of wheat chromosomes was significant, with P<0.01 indicating a non-random distribution.  Functional annotation and characterization of SSR-containing unigenes have been performed. Eighty-six sequences were identified and sorted into 25 putative TF families and establish 166 pathways using KEGG.  Primer-BLAST was used to predict the polymorphism, which was 39% of the 63 primer pairs of SSR markers. Our current study attempts to help farmers in wheat breeding programs to have drought-tolerant accessions, particularly in developing countries.


Keywords


Drought, wheat, EST-SSR, in-silico, computational.

Full Text:

View Full Text

References


Alsamman, A.M., Ibrahim, S.D., Hamwieh, A., 2019. KASPspoon: An in vitro and in silico PCR analysis tool for high-throughput SNP genotyping. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz004

Aninbon, C., Jogloy, S., Vorasoot, N., Nuchadomrong, S., 2017. Change of arginine content and some physiological traits under midseason drought in peanut genotypes with different levels of drought resistance 285–293. https://doi.org/10.3906/tar-1609-41

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J. and Ronen, G., 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. RESEARCH 7191. https://doi.org/10.1126/science.aar7191

Arbeiter, A.B., Hladnik, M., Jakše, J., Bandelj, D., 2017. Identification and validation of novel EST-SSR markers in olives. Sci. Agric. 2, 215–225.

Asadi, A.A., Rashidi Monfared, S., 2014. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments. Mol. Genet. Genomics 289, 625–640. https://doi.org/10.1007/s00438-014-0839-z

Bernardo, R., 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. https://doi.org/10.2135/cropsci2008.03.0131

Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L.A., D’Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F.X., Edwards, K.J., Bevan, M.W., Hall, N., 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710. https://doi.org/10.1038/nature11650

Budak, H., Kantar, M., Yucebilgili Kurtoglu, K., 2013. Drought tolerance in modern and wild wheat. Sci. World J. 2013. https://doi.org/10.1155/2013/548246

Conesa, A., Götz, S., 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008. https://doi.org/10.1155/2008/619832

Farooq, M., Hussain, M., Siddique, K.H.M., 2014. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRC. Crit. Rev. Plant Sci. https://doi.org/10.1080/07352689.2014.875291

Gahlaut, V., Jaiswal, V., Tyagi, B.S., Singh, G., Sareen, S., Balyan, H.S., Gupta, P.K., 2017. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS One 12, e0182857. https://doi.org/10.1371/journal.pone.0182857

Gill, B.S., Appels, R., Botha-Oberholster, A.M., Buell, C.R., Bennetzen, J.L., Chalhoub, B., Chumley, F., Dvořák, J., Iwanaga, M., Keller, B., Li, W., McCombie, W.R., Ogihara, Y., Quetier, F., Sasaki, T., 2004. A workshop report on wheat genome sequencing: International genome research on wheat consortium, in: Genetics. https://doi.org/10.1534/genetics.104.034769

Gill, B.S., Friebe, B., Do, T.R.E.N., 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat ( Triticum aestivum )’ 1986.

Goyal, E., Amit, S.K., Singh, R.S., Mahato, A.K., Chand, S., 2016. Transcriptome profiling of the salt- stress response in Triticum aestivum cv . Kharchia Local. Nat. Publ. Gr. 1–14. https://doi.org/10.1038/srep27752

Huang, X., Madan, A., 1999. CAP3: A DNA sequence assembly program. Genome Res. https://doi.org/10.1101/gr.9.9.868

Iqbal, M.J., Maqsood, Y., Abdin, Z.U., Manzoor, A., Hassan, M., Jamil, A., 2016. SSR Markers Associated with Proline in Drought Tolerant Wheat Germplasm. Appl. Biochem. Biotechnol. https://doi.org/10.1007/s12010-015-1927-1

Iquebal, M.A., Sharma, P., Jasrotia, R.S., Jaiswal, S., Kaur, A., 2019. RNAseq analysis reveals drought- responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci. Rep. 1–18. https://doi.org/10.1038/s41598-019-49915-2

Kent, W.J., 2002. BLAT — The BLAST -Like Alignment Tool. Genome Res. 12, 656–664. https://doi.org/10.1101/gr.229202.

Li, Chao, Li, Cheng, Wang, B., Zhang, R., Fu, K., Gale, W.J., Li, Chunyan, 2018. Programmed cell death in wheat ( Triticum aestivum L . ) endosperm cells is affected by drought stress 1039–1052.

M. Perez-de-Castro, A., Vilanova, S., Canizares, J., Pascual, L., M. Blanca, J., J. Diez, M., Prohens, J., Pico, B., 2012. Application of Genomic Tools in Plant Breeding. Curr. Genomics. https://doi.org/10.2174/138920212800543084

Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., Goto, S., 2006. EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl066

Michaletti, A., Naghavi, M.R., Toorchi, M., Zolla, L., Rinalducci, S., 2018. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep. https://doi.org/10.1038/s41598-018-24012-y

Mohan, A., Goyal, A., Singh, R., Balyan, H.S., Gupta, P.K., 2007. Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes. Crop Sci. https://doi.org/10.2135/cropsci2006-06-0376tpg

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm321

Nahas, L.D., Al-husein, N., Lababidi, G., Hamwieh, A., 2019. In silico prediction of novel genes responsive to drought and salinity in bread wheat ( Triticum aestivum ). PLoS One 1–13.

Nezhadahmadi, A., Prodhan, Z.H., Faruq, G., 2013. Drought Tolerance in Wheat 2013.

Peng, J.H., Lapitan, N.L.V., 2005. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genomics. https://doi.org/10.1007/s10142-004-0128-8

Qiu, L., Yang, C., Tian, B., Yang, J.B., Liu, A., 2010. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-278

Rudd, S., 2003. Expressed sequence tags: Alternative or complement to whole genome sequences? Trends Plant Sci. https://doi.org/10.1016/S1360-1385(03)00131-6

Saini, P., Yadav, D.K.R.C., Yadav, N.R., 2019. SRAPs and EST-SSRs provide useful molecular diversity for targeting drought and salinity tolerance in Indian mustard. Mol. Biol. Rep. 0, 0. https://doi.org/10.1007/s11033-019-04590-4

Sathishkumar, R., Lakshmi, P.T.V., Annamalai, A., Arunachalam, V., 2011. Mining of simple sequence repeats in the Genome of Gentianaceae. Pharmacognosy Res. https://doi.org/10.4103/0974-8490.79111

SHI, J. feng, MAO, X. guo, JING, R. lian, PANG, X. bin, WANG, Y. guo, CHANG, X. ping, 2010. Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat. Agric. Sci. China. https://doi.org/10.1016/S1671-2927(09)60100-0

Shi, S., Azam, F.I., Li, H., Chang, X., Li, B., Jing, R., 2017. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 213, 1–19. https://doi.org/10.1007/s10681-017-2002-5

Singh, A.K., Chaurasia, S., Kumar, S., Singh, R., Kumari, J., Yadav, M.C., Singh, N., Gaba, S., Jacob, S.R., 2018. Identification , analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biol. 1–15.

Sorkheh, K., Prudencio, A.S., Ghebinejad, A., Dehkordi, M.K., Erogul, D., Rubio, M., Martínez-Gómez, P., 2016. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res. Notes 9, 1–11. https://doi.org/10.1186/s13104-016-2143-y

Sun, S.J., Guo, S.Q., Yang, X., Bao, Y.M., Tang, H.J., Sun, H., Huang, J., Zhang, H.S., 2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot. https://doi.org/10.1093/jxb/erq120

Thiel, T., Michalek, W., Varshney, K., Graner, A., 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley ( Hordeum vulgare L .) 411–422. https://doi.org/10.1007/s00122-002-1031-0

Ullah, N., Yüce, M., Neslihan Öztürk Gökçe, Z., Budak, H., 2017. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics. https://doi.org/10.1186/s12864-017-4321-2

Varshney, R.K., Graner, A., Sorrells, M.E., 2005. Genic microsatellite markers in plants : features and applications 23. https://doi.org/10.1016/j.tibtech.2004.11.005

Varshney, R.K., Hiremath, P.J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A.A., Vadez, V., Xiao, Y., Srinivasan, R., Gaur, P.M., Siddique, K.H.M., Town, C.D., Hoisington, D.A., 2009. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10. https://doi.org/10.1186/1471-2164-10-523

WANG, S. guang, JIA, S. shan, SUN, D. zhen, FAN, H., CHANG, X. ping, JING, R. lian, 2016. Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). J. Integr. Agric. 15, 1955–1967. https://doi.org/10.1016/S2095-3119(15)61264-3

Xia, H., Zheng, X., Chen, L., Gao, H., Yang, H., Long, P., Rong, J., Lu, B., Li, J., Luo, L., 2014. Genetic Differentiation Revealed by Selective Loci of Drought-Responding EST-SSRs between Upland and Lowland Rice in China 9. https://doi.org/10.1371/journal.pone.0106352

Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., Li, Y., Zhang, H., Ali, J., Li, Z., 2014. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One. https://doi.org/10.1371/journal.pone.0092913

Yan, D.H., Xia, X., Yin, W., 2013. NF-YB Family Genes Identified in a Poplar Genome-wide Analysis and Expressed in Populus euphratica Are Responsive to Drought Stress. Plant Mol. Biol. Report. https://doi.org/10.1007/s11105-012-0508-5

Yang, Z.J., Peng, Z.S., Yang, H., 2016. Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat ( Triticum aestivum L .). GMR 177, 1–14.

Zhuang, X., McPhee, K.E., Coram, T.E., Peever, T.L., Chilvers, M.I., 2013. Development and Characterization of 37 Novel EST-SSR Markers in Pisum sativum (Fabaceae) . Appl. Plant Sci. https://doi.org/10.3732/apps.1200249




DOI: https://doi.org/10.36462/H.BioSci.20203

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nahas et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

...........................................................................................................................................................

Other "Highlights in" Journals

Highlights in Bioinformatics, Highlights in Chemistry, Highlights in Science, Highlights in Microbiology, Highlights in Plant Science

Free counters!


........................................................................................................................................

International Library of Science "HighlightsIn" is an Open Access Scientific Publishers, aiming to science and knowledge support